Copied to
clipboard

G = C42.455D4order 128 = 27

4th central extension by C42 of D4

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.455D4, C42.597C23, C4○D41C8, D44(C2×C8), Q84(C2×C8), C4.44C4≀C2, C42(D4⋊C8), D4⋊C837C2, C42(Q8⋊C8), Q8⋊C843C2, C42(D4⋊C8), (C4×D4).12C4, C42(Q8⋊C8), C4.3(C22×C8), (C4×Q8).12C4, C4.3(C2×M4(2)), C4.118(C4○D8), C4⋊C8.244C22, C4.36(C22⋊C8), (C4×C8).362C22, C42.256(C2×C4), (C22×C4).539D4, (C2×C4).44M4(2), C42.12C45C2, C42⋊C2.15C4, (C4×D4).261C22, C22.2(C22⋊C8), (C4×Q8).248C22, C23.92(C22⋊C4), (C2×C42).1034C22, C2.1(C23.24D4), (C2×C4×C8)⋊2C2, C2.3(C2×C4≀C2), (C2×C4).52(C2×C8), (C4×C4○D4).1C2, C4⋊C4.175(C2×C4), (C2×C4○D4).13C4, C2.12(C2×C22⋊C8), (C2×D4).189(C2×C4), (C2×C4).1440(C2×D4), (C2×Q8).172(C2×C4), (C2×C4).302(C22×C4), (C22×C4).395(C2×C4), C22.96(C2×C22⋊C4), (C2×C4).389(C22⋊C4), SmallGroup(128,208)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C42.455D4
C1C2C22C2×C4C42C2×C42C4×C4○D4 — C42.455D4
C1C2C4 — C42.455D4
C1C42C2×C42 — C42.455D4
C1C22C22C42 — C42.455D4

Generators and relations for C42.455D4
 G = < a,b,c,d | a4=b4=1, c4=a2b2, d2=b, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=a2b-1c3 >

Subgroups: 236 in 138 conjugacy classes, 64 normal (36 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C4×C8, C4×C8, C22⋊C8, C4⋊C8, C2×C42, C2×C42, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C22×C8, C2×C4○D4, D4⋊C8, Q8⋊C8, C2×C4×C8, C42.12C4, C4×C4○D4, C42.455D4
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C22⋊C8, C4≀C2, C2×C22⋊C4, C22×C8, C2×M4(2), C4○D8, C2×C22⋊C8, C23.24D4, C2×C4≀C2, C42.455D4

Smallest permutation representation of C42.455D4
On 64 points
Generators in S64
(1 39 31 47)(2 40 32 48)(3 33 25 41)(4 34 26 42)(5 35 27 43)(6 36 28 44)(7 37 29 45)(8 38 30 46)(9 59 49 24)(10 60 50 17)(11 61 51 18)(12 62 52 19)(13 63 53 20)(14 64 54 21)(15 57 55 22)(16 58 56 23)
(1 22 27 61)(2 23 28 62)(3 24 29 63)(4 17 30 64)(5 18 31 57)(6 19 32 58)(7 20 25 59)(8 21 26 60)(9 45 53 33)(10 46 54 34)(11 47 55 35)(12 48 56 36)(13 41 49 37)(14 42 50 38)(15 43 51 39)(16 44 52 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 21 22 26 27 60 61 8)(2 25 23 59 28 7 62 20)(3 58 24 6 29 19 63 32)(4 5 17 18 30 31 64 57)(9 36 45 12 53 48 33 56)(10 11 46 47 54 55 34 35)(13 40 41 16 49 44 37 52)(14 15 42 43 50 51 38 39)

G:=sub<Sym(64)| (1,39,31,47)(2,40,32,48)(3,33,25,41)(4,34,26,42)(5,35,27,43)(6,36,28,44)(7,37,29,45)(8,38,30,46)(9,59,49,24)(10,60,50,17)(11,61,51,18)(12,62,52,19)(13,63,53,20)(14,64,54,21)(15,57,55,22)(16,58,56,23), (1,22,27,61)(2,23,28,62)(3,24,29,63)(4,17,30,64)(5,18,31,57)(6,19,32,58)(7,20,25,59)(8,21,26,60)(9,45,53,33)(10,46,54,34)(11,47,55,35)(12,48,56,36)(13,41,49,37)(14,42,50,38)(15,43,51,39)(16,44,52,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,21,22,26,27,60,61,8)(2,25,23,59,28,7,62,20)(3,58,24,6,29,19,63,32)(4,5,17,18,30,31,64,57)(9,36,45,12,53,48,33,56)(10,11,46,47,54,55,34,35)(13,40,41,16,49,44,37,52)(14,15,42,43,50,51,38,39)>;

G:=Group( (1,39,31,47)(2,40,32,48)(3,33,25,41)(4,34,26,42)(5,35,27,43)(6,36,28,44)(7,37,29,45)(8,38,30,46)(9,59,49,24)(10,60,50,17)(11,61,51,18)(12,62,52,19)(13,63,53,20)(14,64,54,21)(15,57,55,22)(16,58,56,23), (1,22,27,61)(2,23,28,62)(3,24,29,63)(4,17,30,64)(5,18,31,57)(6,19,32,58)(7,20,25,59)(8,21,26,60)(9,45,53,33)(10,46,54,34)(11,47,55,35)(12,48,56,36)(13,41,49,37)(14,42,50,38)(15,43,51,39)(16,44,52,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,21,22,26,27,60,61,8)(2,25,23,59,28,7,62,20)(3,58,24,6,29,19,63,32)(4,5,17,18,30,31,64,57)(9,36,45,12,53,48,33,56)(10,11,46,47,54,55,34,35)(13,40,41,16,49,44,37,52)(14,15,42,43,50,51,38,39) );

G=PermutationGroup([[(1,39,31,47),(2,40,32,48),(3,33,25,41),(4,34,26,42),(5,35,27,43),(6,36,28,44),(7,37,29,45),(8,38,30,46),(9,59,49,24),(10,60,50,17),(11,61,51,18),(12,62,52,19),(13,63,53,20),(14,64,54,21),(15,57,55,22),(16,58,56,23)], [(1,22,27,61),(2,23,28,62),(3,24,29,63),(4,17,30,64),(5,18,31,57),(6,19,32,58),(7,20,25,59),(8,21,26,60),(9,45,53,33),(10,46,54,34),(11,47,55,35),(12,48,56,36),(13,41,49,37),(14,42,50,38),(15,43,51,39),(16,44,52,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,21,22,26,27,60,61,8),(2,25,23,59,28,7,62,20),(3,58,24,6,29,19,63,32),(4,5,17,18,30,31,64,57),(9,36,45,12,53,48,33,56),(10,11,46,47,54,55,34,35),(13,40,41,16,49,44,37,52),(14,15,42,43,50,51,38,39)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4L4M···4R4S···4X8A···8P8Q···8X
order122222224···44···44···48···88···8
size111122441···12···24···42···24···4

56 irreducible representations

dim1111111111122222
type++++++++
imageC1C2C2C2C2C2C4C4C4C4C8D4D4M4(2)C4≀C2C4○D8
kernelC42.455D4D4⋊C8Q8⋊C8C2×C4×C8C42.12C4C4×C4○D4C42⋊C2C4×D4C4×Q8C2×C4○D4C4○D4C42C22×C4C2×C4C4C4
# reps12211122221622488

Matrix representation of C42.455D4 in GL3(𝔽17) generated by

100
0130
0013
,
1300
0130
0013
,
900
0010
01414
,
800
0010
030
G:=sub<GL(3,GF(17))| [1,0,0,0,13,0,0,0,13],[13,0,0,0,13,0,0,0,13],[9,0,0,0,0,14,0,10,14],[8,0,0,0,0,3,0,10,0] >;

C42.455D4 in GAP, Magma, Sage, TeX

C_4^2._{455}D_4
% in TeX

G:=Group("C4^2.455D4");
// GroupNames label

G:=SmallGroup(128,208);
// by ID

G=gap.SmallGroup(128,208);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,184,1123,570,136,172]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2*b^2,d^2=b,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a^2*b^-1*c^3>;
// generators/relations

׿
×
𝔽